RSS

Efficient Spin Injection into Silicon and the Role of the Schottky Barrier

26 Nov

Published in Scientific report / Nature Publishing Group.

Abstract:

Implementing spin functionalities in Si, and understanding the fundamental processes of spin injection and detection, are the main challenges in spintronics. Here we demonstrate large spin polarizations at room temperature, 34% in n-type and 10% in p-type degenerate Si bands, using a narrow Schottky and a SiO2 tunnel barrier in a direct tunneling regime. Furthermore, by increasing the width of the Schottky barrier in non-degenerate p-type Si, we observed a systematic sign reversal of the Hanle signal in the low bias regime. This dramatic change in the spin injection and detection processes with increased Schottky barrier resistance may be due to a decoupling of the spins in the interface states from the bulk band of Si, yielding a transition from a direct to a localized state assisted tunneling. Our study provides a deeper insight into the spin transport phenomenon, which should be considered for electrical spin injection into any semiconductor.

For complete report, please refer http://www.nature.com/srep/2013/131112/srep03196/full/srep03196.html#!

For more details, you can also refer my thesis http://www.chalmers.se/mc2/EN/news/events/master-thesis2298

 
Leave a comment

Posted by on November 26, 2013 in Nanotech, Spintronics

 

Tags: , , , , , ,

Leave a comment